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A method is proposed for the determination of the lower bound of distances
of a pair of fixed bodies from a third body in the case of negative constant
of the energy integral, when sufficient conditions of the Hill absolute sta -
bility of motion of the pair of bodies are assumed to be satisfied.

1, Statement of the problem, The unrestricted Newtonian problem of
three points (bodies) P,, P,, and Py of mass m, m,, and my, respectively, is consi-
dered in a system of coordinates whose origin lies at the baricenter (the center of mass
of the set of three points), It is assumed that the constant vector C of the moment of
momentum is nonzero, i,e. C ==]C | > 0. The case, most interesting from the ap-
plication point of view, of h <C 0, where /4 is the constant of the energy integral
T = U -~ h (T is the kinetic energy and U the force function) is analyzed.

When ¢ > 0 triple collisions are impossible. According to Sundman (see, e, g.,
[1]) a mathematical solution of the problem exists for — oo <t <+ o0 (¢ is the
time), in spite of the possibility of dual collisions, Sundman's statement about the lo-
wer boundedness of the positive constant of perimeter AP,P,P; when ¢ >0 is also
important, It should be noted, however, that his theory is particularly complicated ,
while the estimates are nevertheless quite coarse ; the latter may be due to the consi -
derable generality of the case considered by him.

In the present paper the lower bounds for two (out of three) relative distances rij
between the bodies, analogous to Sundman’s lower bounds, are derived comparatively
simply by using a supplementary assumption described below .

To explain the essence of that supplementary assumption we introduce the neces -
sary notation and definitions. We present the energy integral in the form ' = U— 2/,
where # = — h >> O because of the assumption that A <C 0 . Note that T >0,
since owing to C >> 0 it cannot vanish. Hence always U > h’. We introduce the
relative masses of bodies W; =my;/ M, j=1,2,3, andM=my + M, + mg;
evidently 0 << p; << 1 and My + My + us = 1. Then the force function

U= fM? <M1H2 1 b Hiafts )

T12 Tiz T3
where f is Newton's gravitational constant. Since U > h’, we always have

. M2
Ian;:z? ik << LE\_ (Wil + pas + Papts) (.1
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We separate one of the three pairs of bodies and denote its bodies by P; and P,
such that By > p,, which can be evidently obtained by a suitable numbering of these,
Let 012 be the center of mass P, and P, Weset r= 012233 and ‘p = r [ ryq, where

r and p define the absolute and the relative distances of body Py from the pair P
and P, (only at the instant of collision of P, with P, , p = -+ oo ). In what follows
we shall need the following notation:

7\-*‘“@?_1*_—“-1;, v = pg (M1 + o)

— 1059 R . g = Oy Py |
PPy ot PPy 1+ e

Note that 0 << p<C{g<1and p+gq =1,
The system moment of inertia / relative to the baricenter can now be expressed
by the formula

= e, PO o M), i (p) = b+ v

It was shown in [2] and proved in [3] that when r > grys > pryg, i.e. when
p>q>p

M2
U<U, =20, 0) w (o) = mapa + o (Hi + S22

In other words , the quantity U for given 1, > 0 and p >> ¢ >> p attains its
maximum when P, lies on the straight line P, P, outside a like segment beyond point
p,.

On the basis of the remark about the numbering of bodies we attribute the following
two definitions to the pair P; and P,,

Definition 1,1 (see [2, 4, 5]). The motion of a specified pair of bodies P,
and P, is called Hill stable if at all times ry, < H, where # > 0 is some con-~-
stant,

Remark 1.1, The inequality (1.1) does not by itself imply the existence of
even a single pair (out of three) whose motion is Hill stable,

Definition 1,2 (see [5] ). The motion of the pair P, and P, is called abso-
lutely Hill stable, if at all times p > p,, where P, is some constant such that
Px > 9 >D.

Remark 1,2, The absolute Hill stability implies simply the stability of mo~
tion of P, and £, and, also, the impossibility of collisions for other pairs of bodies
(the first follows from the definitions and inequality (1, 1) and the second, from the
definition 1.2 and the impossibility of triple collisions when € >>0),

Below we assume that the motion of the specified pair P, and P, is absolutely Hill
stable. This property of motions is ensured by the fulfilment of corresponding sufficient
conditions, Before formulating these conditions we shall explain the prerequisites of
these .,

For p >>.q > p from the inequality IT > {/,C? i.e. I (U — R’y > /,C?,
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we have I (U, — k') > 1/,C?, hence TU.* > 2h'C%
We infroduce the notation

. 2r'C?
S 0)=i(Pu(0) 5= Zgp

(it is expedient to call the dimensionless constant s the Hill stability index), The
last of inequalities can then be written as S, (p) >> s. Along (g, -+ oo) function S,
(p) attains its absolute minimum (S +)_ at some point, whose position is determined
by the known fifth power algebraic equation, to the left of which the function decrea-
ses and to the right of it it increases, Hence for s > (S,)_ equation §_(p) = s
has two roots on (g, -+ oo). If p, is the greater of these then p > p, is one of the
solutions of the inequality §_ (p) > s.

Theorem (see [2, 3, 5]). Assuming that s > (S,)_and p, is the greater of
the two roots of equation S, (p) = s, and that at the initial instant £, o (£5) => Ox,
we have always 0 > p,.

In what follows the conditions of the theorem are assumed to be satisfied without
further stipulation.

Remark 1.3, Since p, belongs to (g, -} o), py > ¢ and the inequality p>p«
imply by virtue of definition 1,2 the absolute Hill stability of motions of P, and P,.

Examples, Letus consider the problems of Sun (P,) ~Jupiter (P,) - Saturn
(Pg) and of Sun (P,) - Earth (P,) -Jupiter (P;) with initial conditions for the epochs
November 11, 1966 and January, 0, 1930, respectively (in each problem the "Solar
system" is assumed to contain only two planets, and in the second problem the mass of
Earth is taken as the sum of masses of the Earth and Moon),

On these assumptions in the first problem always p > 1.319, and in the second p >
2,585, Since in each case 0 < g< 1 the inequalities defining p show that in the first
problem the motion of the pair Sun ~-Jupiter and in the second that of Sun- Earth are
absolutely Hill stable,

The following simple statement will be used repeatedly below.

Lemma 1,1, On assumptions indicated above always r > 0,

Proof, At the instant of collision between P, and P, whenr,, = Oclearly r >0,
since r = 0’implies a triple collision which is impossible because € > 0. If ry; >0,

from the inequality r / ry, > py > 0 we again have r >0,

2, Derivation of the differential inequality for 7 (f). The deri-
vation for the quantity r(f) of a differential inequality of the form ™ > ¢ {r)
makes it possible to obtain for 7 (£) a constant positive lower bound from which similar
lower bounds follow for distances r,4 and ry3 Derivation of differential inequalities
is more complicated than that of differential equations, since it is necessary to elimi -
nate "extraneous” variables using the method of estimates, In that process the most la-
borious is the proof of Lemma 2,2, The approximate solution of inequality (2. 16) is
derived by an unusual method of successive approximations (corollaries 2,2 - 2.4).

Lemma 2,1, Letthe motion of mass point J be defined in the inertial system
of coordinates Oxyz and r = OJ, with r = | r |, v the velocity of the point, v =
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} v }, & is the acceleration, @, is the projection of & on the r-direction, I=Ir
X vl, and I = [1|. Then

r o= aq, -~ B/r’ (2.1)

The proof is based on the identity
We=r2 R 2 (2.2)

Differentiating the relationship r® == 22 4 y? 4- ;% twice we obtain

= z2" +yy + 2z’
2t = - ra = v»? 4 r (ar®) = v’ 4 ra,

where r° is the unit vector of vector r, from which

2 o2
=g, 4 _v___;_?_‘___ (2.3

Now (2. 1) follows from (2,3) and (2, 2).

Corollary 2,1, If m is the mass of pointJ, L = [r X (mw¥)l,andL=|L|,
then

- L2
ro=a, +W (2.4)

Infact, L=ml, L=ml,and I =L / m.

For obtaining the differential inequality for 7 (f) it is expedient to pass to Jacobi
coordinates in the three body problem., Let Xy, = {;5, Y139 %15} be the vector which
defines the relative position of P, to P, and r = {z, y, z} be the position of P,
relative to 0,,. The related Jacobi equations can be considered as equations that defi-
ne the motion of two fictitious mass points J,, and J of mass my, = AM and m =
vM , respectively, The notation in Lemma 2,1 and Corollary 2,1 fit the second
Jacobi point, and by analogy, the symbols of corresponding quantities for the first point,
such as rys, T2’y Lig, ligy Ly, and Ly,, are natural,

1t will be shown below that in Eq, (2.4) for J the inequalitiesq, << Qand L >0
are (strictly) valid. Hence for the derivation of the inequality of the form > ()
it remains to obtain for g, < 0 the negative lower bound, and for L >> 0 the positive
lower bound both of which depend only on 7,

Lemma 2,2, The estimate

_..{{._ — 2 14 q 2
@“>— 7, K=iMp, [(Pa:—q)2 + (P*+p)2] (2.5

is valid.
Proof. In the notation used here the equations of motion of the second Jacobi
point are of the form

1 1
7" = — fMz (,:83 + 7;";5‘) + Mpqz,, (;;3‘ - ';'1;;) (2.6)

(the right - hand side of equation for y* is obtained from the above by substituting y
for z and yy, for z,, , and similarly for 2z ).
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We denote by & the angle between vectors 1y, and r (0 < ¥ < n1) and set 0 =
cosV(—1<o<<1). Wehavea,=ar® =z"(z / r)+y " (y/r)+ 2" (z/ r). From
this and Eqgs (2. 6)

p q 1 1
a,=—fM [f (,233 -+ r_s> + pqrio (W - —a—>]

13 Tog

Taking into account that from AP,0,,P; and AP,0,,P,

rig? =124 pir? 4 2prypre, g = 2 A @it — 2gryre (2.1
we can write
p(r—qripw) | q(r + prige
a4, = — MG (o), G(o)= TFogd = + g3 120) >0 (2.8)

Remark 2,1, We assume that rj; 5= 0 (r; > 0); it will be readily seen that at
the instant of collision of P, and P, the inequality (2.5) is strict, since p — + o
when r,, — 0. That G (@) > 0 isimplied by r — grp@ >0 and 7+ prip,e >0 by
Vi_rt;l)e;fop =>ps >q=>p; for example, r — gry0 >1 — qrig = Tz (P — q) 2> (0a

It remains to determine with the use of (2, 8) the highest value of function G ()
in_[— 1, 1] for constant positive r, and r, and for ri3 and ry; that depend on
in conformity with (2,7), From (2.7) we have

Pl

PR qrer
T, (@) =— (2.9)

ris’ () = T2

The differentiation of (2.8) with allowance for (2. 9) yields

1 1 —
6 @) = para| sy — o + 3 (Te IERSN (2,10

rig’ To3 T'is

From which, taking into account (2,7)

&) = [ ¢ A=) [, S0 AT

3
Tog Tog rigd ris

where, owing to p >g¢ > p, the quantities in parentheses are positive and, what is
important, independent of ®. When © increases from -1 to 1, ry3 increases and
7,3 decreases, Hence each fraction and, consequently, the whole expression in the first
set of brackets in (2.11) increases, while the fractions and the complete expression in
the second set of brackets decrease. Consequently ¢’ () increases, and the equation
G’ (») = 0 can have only one root o4 in the interval (— 1,1), and ¢’ (0) <0 when
—1 <o <oy and ¢ (o) > 0.when 0, < © < 1. This implies that G (®) can have
in (— 1,1) only one extremum which is 2 minimum. Hence the maximum value of
function G (o) along segment [—1, 1] (which exists since that function is there conti -
nuous) is obtained at one of the ends of that segment.

We have ry (1) = r =+ pry, and ryy (£ 1) = r F gry,. Hence by formula (2.8)

. P q
CED=GF oo + T rrar

1 1
G (1) — G(—1)=dpgror [(rz PR (= PR ]
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But 0 <{r* — g2 2 — pPr,?{(since p<q), hence G{1) —G(—1)>0.
Consequently & (@) < G (1) and according to (2, 8)

M
a,>-—fMG(i)=-%~g(p), g(p)==p“[(pfq)z + (p.g,,)z] (2.12)

But in (g; <+ =)
) 1 1
g (p)”zp”{(p*i*w’ T—gp ]<0

which implies that function g (p) in (g, -+ oo} and in particular in [p,, -+ oo} decreases,
Hence a8r2> — fMg (p,) / r* which yields (2.5).

Lemma 2.3, Let
= VMK, Q = fM®Vivu, (p,) (2.13)
Then

0<Q/IP <C (2.14)

Proof. Since P and @ are positive constants, it is necessary to prove only the
inequality ¢ /P « ¢. Fimst we shall prove that by the basic theorem (see Sect, 1)

uy (o) < V5 TR (2.15)

Infact, = S+(ps) =1i(p) us? (pe) = (A + vpa?) w.® (pg) > Auy?® (p,) from

which follows (2, 18), We recall that s = 2&'C? / (f2M%). Then by formulas (2. 13)
and inequality (2.15)

o _ eV Vi (o)

We pass to the problem of determining the lower bound of quantity I (depending
on r ) (see the text between Lemmas 2,1 and 2,2 above).

Lemma 2,4. Let L < (. Then
(C — L) (L? + P Q%2 (2. 16)

Proof, Jacobi equations (the motion of two fictitious points) contain integrals of
energy and areas which are obtained from the integrals in baricentric coordinates by
transformation to Jacobi variables, with the constants A" and € retaining their values,
Using the energy integral we obtain the following obvious expression for the doubled ki~
netic energy of the system of two Jacobi points

2(1:/’—;;')~.);1»1’(r12 + 7 )+vM( ’2+%>

By virme of 4, = Ly, / (AM) and ! == L [ (vM) we have

Ly L2
2(U—4)> M,’f T+ (2.17)
fM ’ P Lo L2
2[ L pu+{p>--h]>———wig + 5

where allowance is made for U < Uy = fM%ry " u, {p) = fM*Tpu, (p) because p >
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pe > q. In (g, 4+ o0) and in particular in [pe, 4+ o0) function u. (p) decreases so that
iy (p) << 1y (py) when p 2> p,. Strengthening the second of inequalities (2, 17) and then
multiplying it by AvMr® > 0, we obtain

20 Mr [{MPuy (pe) — h'r] 2> vpiLy,% + AL2 (2.18)

From the integral of areas L,, + L= C followsthat C = |Cl= Ly + L <] Ly |
+ I L' = le +Lv i,e.

Ly +L>C (2.19)
By stipulation L < C, which with (2, 19) yields
Li*>(C —L3P>0 (2.20)

From (2, 18) and (2. 20)
v {(C — L)% — 20viM3uy (pg) 70 + A (L2 4- 2vMA'rY) < 0

Such quadratic inequality with respect to p is only possible when the discriminant of
its left-hand side is nonnegative. Hence

AWM, 2 (0 12— Av (G — L)? (L? 4 2vMA'T%) 2> 0
The last inequality, after its division by Av and with allowance for the notation in
(2. 13), yields (2. 16).

Corollary 2.2. Theinequality L > O is strictly true.

Let on the contrary [ = Q << C., Then from (2. 16) C2P?%*? < Q?%?, Since by
Lemma 1,1 r >0, hence C?*P? < Q* and Q/ P > C which contradicts (2. 14).
We have to assume that L ™> 0.

Corollary 2,3, Let
A=C—Q/P (0 ALC) (2.21)

(in establishing the inequalities for A allowance is made for (2. 14)). The strict in-
equality L ~> A is true.
In fact, if L > C, thenL > AsinceC > A. Let nowL < C.From (2. 16), ta-
king into account that >0 , we obtain(C — L)2P%* < Q%2,(C — L)?P? < (%,
0L C—L<Q/P, and [ >C—Q/P=A.

Corollary 2.4. The following strict inequality is valid:

Qr
L>C— ]77\:——:\1-1’:2;@ (2.22)
which is obvious when L > C, Let L < € , then from (2. 16) we have (C — L)% <<
Q%2 / (A® 4 P%?), since L > A. Extracting the square root from both sides of the
last ineguality and taking into consideration that C — L > 0, we again have (2. 22),
From {2.4), (2.5), and (2, 22) with allowance for m == v we immediately
obtain the following lemma,

Lemma 2.5, The following strict inequality is true:

. 1 . Qr 2 K
(), @(T)ZW<¢—W) - (2.23)



Lower bounds of distance between bodies in the unrestricted three body problem 629

where the constants K, P, , and A are defined by formulas (2,5), (2.13), and (2, 21).

8, Use of the differential inequality for 2 (¢)-
Lemma 3.1, Thereexists in the interval 0 << r << +o00o an r, such that
@ (r) >0 when 0 <7 <<ry, ¢ (ry) =0,and ¢ (r) << 0 when r > r,.

Proof, We have

1 9
? (") =22 # P1(r) = (C '—'V-Azg_zrﬁ_'—z‘)z—v?MzKr 3.1

It will be readily seen that in (0, + co), @, (r) is a decreasing function, to wit, it de-
creases from C* >0 to — oo when r varies from 0 to 4 co. This remark and the
first of formulas (3. 1) make the lemma obvious.

Theorem 3,1, Any maximum of function 7 (¥) is strictly greater than 7.

Proof, Note that according to Sundman function r (f) is fairly smooth in spite
of possible instants of collision between P, and P,. Let function r (f) reach its maxi-
mum 7, atsome instant ¥ with r, < ry contrary to the statement of the theorem.
Then 7 (¢;) = 0 and 7™ (¢;) <{ 0. But by Lemma 3,1 ¢ (r,) > 0 and according to
(2.23) r” (#) > 0. This contradiction proves the theorem.

Examples, In the problems Sun (P,) -Jupiter (P,) ~Saturn (P3) and Sun (P,) -
Earth (P,) -Jupiter (Pg) any maximum of function r (), i, e, the distances of P, from
the center of mass of P, and P, are greater than 6,412 a,u, and 5.045 a,u,, res -
pectively (a,u, denotes the astronomical unit).

Let us now consider in (0, {.00) the function

C? 2Q2 AT F P
Y(r) = VM2 + v‘z]ngz an Pr —— (3.2)
2K 4CPQ (V AL PR,
Tr T VEM2RAR Pr -
Obviously
lim$(r) = 4 oo, lim P(r)=0 3.3)
r—++0 r—-}-00

It is not difficult to verify that

V() = —29() @

Lemma 3,2, Intheinterval 0 <{r <Cr, function ¢ (r) decreases and in the
interval ry <C r <C - oo it increases, reaching its negative absolute minimum at
point ry . The equation ¢ (r) = 0 has a single root 7, which belongs to the inter-
val (0, ry) , and the function P (r) > O when 0 << r << r,, and ¥ (r) << 0 when
e <1<+ oo,

Lemma 3.3, The quantity
R=r1%+v(r) (3.5)

varies in conformity with 7, it increases with increasing r and diminishes with de-
creasing r , and attains the same kind of extrema as r .
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Lemma 3,2 follows from (3.4), Lemma 3,1 and (3. 3), while Lemma 3,3 fol -
lows from (3. 5), (3.4), and (2.23),

Theorem 3, 2. Let at the initial instant £y r (%)) > ry and R (f)) < O.
Then always 7 (f) > r,.

Proof, For the initial moment the statement is true by stipulation, Let us prove
its validity in the interval £y < f < + oo by assuming the contrary. Then, owing
to the continuity of r (f) there must exist an instant #; > £, such that 7 (¢;) = r,,
and r (f) > r, when ¢, <_ ¢ <7 t; . The definition of derivative (if At <C 0 is assu-
med) implies that 7 (£) <C 0 (2.23) implies that ™" (¢;) > ¢ (r,) > 0, since 0 <

r, < ry. These two facts imply the existence of a § > 0 such that 7" (#) << 0 when

t— 8§ < t << t;. There are only two possibilities: a) that r (t,) < Qwhen — ¢
<7 t < 1; (in particular when f, <C ¢ < ¢,), and b) that there exists an instant £, <C
¢, such that r° (4,) = 0 and 7" (¢) < 0 when £, < t < ¢,.

Case a), By Lemma 3.3 R (#;) << R (£,) <( 0, i.e. R (t;) < 0 Butby (3.5)
R(t) =r%(t) +¢ (re) = r'? () > 0 (a contradiction),

Case b}, By Lemma 3.3 R (t;) <C R () = r2 (t;) + ¥ Ir ()] =p[r (,)1<<0
(since 7 (&) >r(f) = ry ), i.e. R (§) << 0. But by (3.5) we have again R (t;)

> (O (contradiction),

These two contradictions prove the validity of the theorem for (£, --o0o).The proof
for (—o0, ¢;) is similar.

Corollary 3, 1, When the conditions of the theorem in Sect. 1 and of Theorem
3.2 are satisfied, then always

R

Px

First we point out that the multipliers in parentheses in (3, 6) are strictly positive be -

cause P, > ¢ > p. Estimates (3,6) follow from the inequalities for AP,0,,P;

and AP,0,,P,

rg>r—prp=0—ployr> 0 —ploe)rs

res >r—gqrp =0 —qg/p)r> 1 —q/p)ry
Examples, In the problem Sun (P,) -Jupiter (P,) - Saturn (P,) always r > 3.756

a,u, {any maximum of r () > 6.412 a,u.), r3 > 3.753 a.u., and ry > 0,912 a.u,

In the problem Sun (P;) - Earth (Py) - Jupiter (P,) always r > 2.532 a.u. (any maximum

of r () > 5,045 a,u, ), r;y > 2.532 a,u,, and r,, > 1.553 a.u,
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